

1-Acylthiosemicarbazides 9a-d reacted with ethenetetracarbonitrile (TCNE, 2) in ethyl acetate with formation of N^{\prime}-(4-amino-5,6-dicyano-2H-1,3-thiazin-2-ylidene) substituted hydrazide 10a-d, N^{\prime}-(5-amino-3,4-dicyano-2H-pyrrol-2-ylidene)-2-substituted hydrazide 11a-d and 2-substituted imidazo[2,1-b][1,3,4]-oxadiazole-5,6-dicarbonitrile 12a-d. Rationales for the conversions observed are presented.
J. Heterocyclic Chem., 44, 1171 (2007).

INTRODUCTION

Cyclization of 1-acylthiosemicarbazides may be achieved under various conditions [1-5]. For example, 1-acylthiosemicarbazides were cyclodehydrated with concentrated sulphuric acid [1,2] or methanesulfonic acid [3] to 2-amino-5-aryl-1,3,4-thiadiazols. 3-Mercapto-5-aryl- s-triazoles have been obtained by cyclization of 1aroylthiosemicarbazides under alkaline conditions [4], while their condensation with 2 -chlorocyclohexanone furnished 2-aroylhydrazino-4,5,6,7-tetrahydrobenzothiazoles [5]. On the other hand, C-triazole-5-oyl- N phenylhydrazonoylbromide reacted with benzoylthiosemicarbazide to give 5-phenylthiazole derivatives [6,7]. Acetylthiosemicarbazide when condensed with 6,8-disubstituted-3-acetyl-coumarins in presence of bromine or using lanthanum catalyst, yielded 2-acetylhydrazino-4-coumarinylthiazole [8]. The reaction of 1-chloro-1,4-diphenyl-2,3-diazabutadiene with acetyl- and with 1-benzoylthiosemicarbazide yielded initially the hydrochlorides of N^{2}-acetyl- and N^{2} -benzoyl- Δ^{2}-1,3,4-thiadiazoline-4-carboxamide hydrazones, which were converted by NaOH into the corresponding free bases 4 -substituted- $\Delta^{2}-1,3,4$ thiadiazolines [9]. In the medicinal chemistry, acylthiosemicarbazides have been studied for their potential as therapeutic agents for the treatment of hypertension and CNS depression [10] as well as mitochondrial monoamine oxidase inhibitory (MAOI) activity $[11,12]$.

On the other hand, the interaction of thiosemicarbazide derivatives with ethenetetracarbonitrile (TCNE, 2) afforded various heterocyclic compounds via a single electron transfer mechanism [13-18].

Recently, we have demonstrated that when $1,4-$ disubstituted thiosemicarbazides $\mathbf{1}$ are reacted with $\mathbf{2}, 2-$ substituted-5-phenyl-1,3,4-thiadiazoles $\mathbf{3}$ and 2 -substi-
tuted-5-phenyl-1,3,4-oxadiazoles 4 in addition to compounds 5-8 (Chart 1) [17] are formed.

1,3,4: a: $\mathrm{R}=\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CO} ; \mathbf{b}: \mathrm{R}=\mathrm{C}_{6} \mathrm{H}_{5} ; \mathbf{c}: \mathrm{R}=\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2} ; \mathbf{d}: \mathrm{R}=\mathrm{CH}_{2}=\mathrm{CHCH}_{2} ;$ e: $\mathrm{R}=\mathrm{EtOOC}$

As will be outlined in detail below, in this paper we report several heterocyclization of 1-acylthiosemicarbazide 9a-d using ethenetetracarbonitrile as a reaction mediator and as a building block.

RESULTS AND DISCUSSION

Treatment of $\mathbf{9 a - d}$ with two molar equivalents of $\mathbf{2}$ in ethyl acetate as solvent at room temperature resulted in a brown colouration of the solution that quickly turned into red, and formation of reddish brown precipitate of thiazinylidenebenzoylhydrazide derivatives 10a-d (48-52 $\%$) (Scheme 1). The filtrates were concentrated to dryness and the residue subjected to vacuum sublimation to remove any unreacted 2. Chromatographic separation of the residue gave numerous zones, from which products $\mathbf{1 1}$

and $\mathbf{1 2}$ could be isolated (Scheme 1). In these cases, $\mathbf{2}$ is "built in" completely or partially into the new structures. The addition of the nucleophilic sites ($\mathrm{N}-\mathrm{H}$ bonds or $\mathrm{S}-\mathrm{H}$) of the starting materials $9 \mathbf{a}-\mathbf{d}$ across the $\mathrm{C}=\mathrm{C}$ double bond of $\mathbf{2}$ may generate the four primary adducts ($\mathbf{A}, \mathbf{B}, \mathbf{C}, \mathbf{D}$) producing from the sites $\mathrm{N}^{1}, \mathrm{~N}^{2}, \mathrm{SH}$ and NH_{2} (Chart 2) and tautomers that are capable of releasing HCN (which effects a net tricyanovinylation) $[19,20]$. On the other hand, $\left[\pi^{4}+\pi^{2}\right]$ cycloadditions of 2 with dehydrogenated 9a-d are not suggested to occur based on the nature of the products formed. Thus, the structures of products $\mathbf{1 0 - 1 2}$ need to be derived from one suitable precursor out of the previously suggested sites (Scheme 2). Structural assignments of the products $\mathbf{1 0 - 1 2}$ are based on spectral data and on combustion analyses.

Chart 2

Compounds 10a-c. The molecular ions in their EImass spectra confirm the molecular masses and gross compositions. Further, the following common features of the fragmentation patterns lead to support to the assigned structures: loss of N_{2} giving intense ($\mathrm{M}^{+}-28$) ions and loss of $\mathrm{R}-\mathrm{C}=\mathrm{O}$ giving rise to the ion $\mathrm{m} / \mathrm{z}=191$ common in the spectra of all four compounds. The ir spectra show characteristic absorptions for the NH_{2} and NH groups in the range of 3420-3160, and 2220-2225 cm ${ }^{-1}$ for conjugated CN groups, and bonds characteristic to an

Scheme 2

amide CO groups in the range $1695-1685 \mathrm{~cm}^{-1}$. The ${ }^{1} \mathrm{H}$ nmr spectra show the presence of NH_{2} groups as broad signals for 2 H between $\delta=7.24-7.28 \mathrm{ppm}$, NH of amide group as a broad signals for 1 H between $\delta=10.81-10.88$ ppm and for additionally 10a, the expected signals for the acetyl group ($\delta=2.37 \mathrm{ppm}$). The ${ }^{13} \mathrm{C} \mathrm{nmr}$ spectra of $\mathbf{1 0 a}$ showed signals around 118.71-118.93 (CN), 164.18 (C4), 155.32 ($\mathrm{C}-2$), 121.22 and 121.74 ($\mathrm{C}-5$ and $\mathrm{C}-6$), $173.82(\mathrm{C}=\mathrm{O})$ and $26.42\left(\mathrm{CH}_{3}\right)$.

Compounds 11a-d. $\quad N^{\prime}$-(5-Amino-3,4-dicyano- 2 H -pyrrol-2-ylidene)-4-substituted benzohydrazide 11a-c were obtained as characteristically orange crystals. Their molecular structure are supported by the following findings: for example 11b; the gross formula $\mathrm{C}_{13} \mathrm{H}_{8} \mathrm{~N}_{6} \mathrm{O}$ represents a products from one molecule of $\mathbf{9 b}$ and one of 2 with loss of sulphur and one molecule of HCN and formation the pyrrole ring. The presence of an amide group ($\delta_{\mathrm{C}=\mathrm{O}}=173.56 \mathrm{ppm}$) and the absence of both thioamide function and or sulphur in 11b rules out any oxa- or thiacyclic structures. Both a $\mathrm{NH}_{2}\left(\delta_{\mathrm{H}}=7.38 \mathrm{ppm}\right)$ and a low field NH group ($\delta_{\mathrm{H}}=10.89 \mathrm{ppm}$) are present. The mass spectrum shows the molecular ion at 264 and fragments at $\mathrm{m} / \mathrm{z} 105$ (representing the benzoyl group residue) and 131 (representing 5-amino-3,4-dicyanopyrrolylidenyl residue) from the cleavage of $\mathrm{C}_{2}-\mathrm{N}$ and CO-NH bonds. The amide carbonyl stretch wavenumber ($1690 \mathrm{~cm}^{-1}$) points to some degree of electron withdrawal from N_{2}. The presence of two cyano groups in the spectrum which show characteristic absorption at 2225 cm^{-1} and signals around $118.3(\mathrm{CN}), 155.69(\mathrm{C}-2)$ and $164.29 \mathrm{ppm}(\mathrm{C}-5)$ in the ${ }^{13} \mathrm{C} \mathrm{nmr}$ spectra lend further support to the structure assigned 11b. Structure $\mathbf{1 1}$ was accessible only from precursor (C) (Chart 2) after elimination of sulphur but not from \mathbf{A}, \mathbf{B} and \mathbf{D}.

While (C) would lead to $\mathbf{1 1}$ via 16, the isomeric structure 11' would be accessible from \mathbf{D} after elimination
of sulphur. The mass spectral fragmentation of the product (see Fig. 1), however, is well in agreement with structure $\mathbf{1 1}$ but not with structure $\mathbf{1 1}^{\prime}$. Furthermore, the ir spectrum of $\mathbf{1 1 b}$ in dilute CCl_{4} did not show the presence of intermolecular H bridge as in structure 11' (Figure 1).

Figure 1
Compounds 12a-d. Compounds 12a-d do not contain sulphur but contain five nitrogen atoms, thus for example the molecular mass of $\mathbf{1 2 d}$ represents a gross composition $\mathrm{C}_{13} \mathrm{H}_{6} \mathrm{BrN}_{5} \mathrm{O}$ reached from 9 d and 2 after loss $\mathrm{H}_{2} \mathrm{~S}$ and two HCN. 2-(4-Bromobenzyl)imidazo[2,1-b][1,3,4]-oxadiazole-5,6-dicarbonitrile was obtained.

The mass spectrum exhibited a molecular ion at m / z $327 / 329$ (28%). The ir spectrum showed strong band at $2210 \mathrm{~cm}^{-1}$ due to the cyano groups, 2980 (ali-CH) and several peaks at $1640,1600 \mathrm{~cm}^{-1}(\mathrm{C}=\mathrm{N}$ and aryl $\mathrm{C}=\mathrm{C})$. The characteristic absorption of C-O-C fragment at 1090 cm^{-1} [21]. The $300 \mathrm{MHz}{ }^{1} \mathrm{H} \mathrm{nmr}$ (in DMSO- d_{6}) displayed broadened signal at $4.28\left(\mathrm{Ph}-\mathrm{CH}_{2}\right)$ in addition to aromatic protons. The presence of $\mathrm{CH}_{2} \mathrm{Ph}$ is also evident from the ${ }^{13} \mathrm{C}$-DEPT-nmr spectrum exihibiting negative signals at δ $=52.90 \mathrm{ppm}$. The decoupled carbon spectrum of $\mathbf{1 2 d}$ showed another signals at 164.33 and 122.78 ppm assigned to (C-2 and C-5,6) respectively.

CONCLUSION

The reactions and the heterocyclic products here provide insight into the spontaneous reactions between the electron donating 1-acylthiosemicarbazides $9 \mathbf{a}-\mathbf{d}$ and a suitable electron acceptor 2 . The reaction proceeds through a fairly complex multistep process where two kinds of ring forming reactions are observed. Thus, ethenetetracarbonitrile (2) may act as a mediator and as a building block in heterocyclization of thiosemicarbazides. The results reported here supplement the rich chemistry of ethenetetracarbonitrile (2).

EXPERIMENTAL

Melting points (uncorrected) were determined in open glass capillaries on a Gallenkamp melting point apparatus. The ir spectra were recorded from potassium bromide disks with a Shimadzu 408 instrument. The $300 \mathrm{MHz}{ }^{1} \mathrm{H}$ and $75 \mathrm{MHz}{ }^{13} \mathrm{C}$ nmr spectra were recorded on Bruker WM 300 instrument, Chemical shifts are expressed as $\delta(\mathrm{ppm})$ with tetramethylsilane as internal reference, $\mathrm{s}=$ singlet, $\mathrm{m}=$ multiplet; ${ }^{13} \mathrm{C}$ assignments have been made with the aid of DEPT 135/90 spectra. The mass
spectra [70 eV , electron impact mode] were obtained on an AMD 604 instrument. Elemental analyses were carried out at the Microanalytical Centre, Cairo University, Egypt. Preparative layer chromatography was performed on air dried 1.0 mm thick layers of slurry applied silica gel Merck PF254 on 48 cm wide and 20 cm high glass plates. Zones were detected by their colour or by quenching of indicator fluorescence upon exposure to 254 $n m$ light.

Starting Materials.

Synthesis of 1-(4-bromophenylaceto)thiosemicarbazide ($9 \mathbf{d}$). To a stirred solution of thiosemicarbazide $(0.91 \mathrm{~g}, 10$ mmol) in 50 ml dry acetone, p-bromophenylacetic acid (2.15 g , 10 mmol) was added and the mixture was refluxed for 3 h . A white precipitate was formed, recrystallized from ethanol to give colourless crystals ($2.84 \mathrm{~g}, 85 \%$), m.p $=93-95^{\circ} \mathrm{C}$

1-Acetylthiosemicarbazide 9a; m.p $=165-167{ }^{\circ} \mathrm{C}$ (lit. [2224] $166^{\circ} \mathrm{C}$).

1-Benzoylthiosemicarbazide 9b; m.p $=195-197^{\circ} \mathrm{C}$ (lit. [2328] $\left.196-199^{\circ} \mathrm{C}\right)$.

1-(4-Hydroxyphenyl)thiosemicarbazide 9c; m.p = 212-214 ${ }^{\circ} \mathrm{C}$ (lit. [29] 214-216 ${ }^{\circ} \mathrm{C}$).

Reaction of 1-acylthiosemicarbazides 9a-d with 2. A solution of $\mathbf{9 a - d}(1 \mathrm{mmol})$ in 25 ml of dry ethyl acetate was added dropwise with stirring at room temperature to 2 (2.0 mmol) in ethyl acetate (10 ml). The reaction mixture colour changed gradually from brown to red, and the mixture was left standing for 48 h . at room temperature, during which time a crystalline reddish brown product separated. The resulting solid material was filtered and the precipitate was washed with ethanol, dried and recrystallized from sutiable solvent to give N^{\prime}-(4-amino-5,6-dicyano-2H-1,3-thiazin-2-ylidene) substituted hydrazide 11a-d. The filtrate was concentrated to dryness and the residue was sublimed at $80^{\circ} \mathrm{C}$ under vacuum to remove unreacted 2, then subjected to PLC (100 mg per plate) using cyclohexane/ethyl acetate (1:1) as eluent to give numerous coloured zones, the two intense of which were removed and extracted. The fastest migrating zone ($\mathrm{R}_{\mathrm{f}}=0.56$, orange) contained N^{\prime}-(5-amino-3,4-dicyano- $2 H$-pyrrol-2-ylidene) substituted hydrazide 10a-d, while the slowest moving zone ($\mathrm{R}_{\mathrm{f}}=$ 0.32 , brown) contained 2-(substituted)imidazo[2,1-b][1,3,4]-oxadiazole-5,6-dicarbonitrile 12a-d. Extraction of the zones with acetone and concentration gave residues, which were rechromatographed to improve purification.
N^{\prime}-(4-Amino-5,6-dicyano-2H-1,3-thiazine-2-ylidene)acetohydrazide (10a). This compound had mp 198-200 ${ }^{\circ}$, red crystals from acetonitrile, yield 115 mg (49 \%); ir: 3390, $3220\left(\mathrm{NH}_{2}\right.$, NH), $2225(\mathrm{CN}), 1690(\mathrm{CO})$ and $1635(\mathrm{C}=\mathrm{N}) \mathrm{cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{nmr}$ (DMSO-d ${ }_{6}$): $\delta 2.37\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 7.28\left(\mathrm{br}, 2 \mathrm{H}, \mathrm{NH}_{2}\right), 10.81$ (br, $1 \mathrm{H}, \mathrm{NH}) ;{ }^{13} \mathrm{C} \mathrm{nmr}\left(\mathrm{DMSO}_{\mathrm{d}}\right.$): $\delta 26.42\left(\mathrm{CH}_{3}\right), 118.71,118.93$ (CN), 121.22, 121.74 (C-5 and C-6), 155.32 (C-2), 164.18 (C-4) and $173.82(\mathrm{CO})$; EI-MS m/z: \% $234\left(\mathrm{M}^{+}, 11\right), 206\left(\mathrm{M}-\mathrm{N}_{2}\right]^{+}$, 33), 191 ($\left[\mathrm{M}-\mathrm{CH}_{3} \mathrm{CO}\right]^{+}, 68$), 137 (29), 121 (18), 93 (100). Anal. Calcd. for $\mathrm{C}_{8} \mathrm{H}_{6} \mathrm{~N}_{6} \mathrm{OS}$ (234.24): C, 41.02; H, 2.58; N, 35.88; S, 13.69. Found: C, 41.19 ; H, 2.46; N, 36.02; S, 13.57
N^{\prime}-(4-Amino-5,6-dicyano-2H-1,3-thiazine-2-ylidene)benzohydrazide (10b). This compound had $\mathrm{mp} 262-264^{\circ}$, reddish brown crystals from methanol, yield 137 mg (51%); ir: 3420, $3160\left(\mathrm{NH}_{2}, \mathrm{NH}\right), 2220(\mathrm{CN}), 1695(\mathrm{CO})$ and $1640(\mathrm{C}=\mathrm{N})$ and 1600 (aryl) $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{nmr}\left(\right.$ DMSO-d $\left._{6}\right): \delta 7.24$ (br, 2H, NH ${ }_{2}$), 7.44-7.95 (m, 5H, phenyl-H), 10.88 (br, $1 \mathrm{H}, \mathrm{NH}$); ${ }^{13} \mathrm{C} \mathrm{nmr}$ (DMSO-d ${ }_{6}$): $\delta 118.52,118.81(\mathrm{CN}), 121.14,121.66(\mathrm{C}-5$ and C-
6), $127.84,128.96,132.82$ (phenyl-CH), 142.56 (phenyl-C-1), 155.76 (C-2), 163.94 (C-4) and 173.96 (CO); EI-MS m/z: \% 269 $\left.\left(\mathrm{M}^{+}, 26\right), 268\left(\mathrm{M}-\mathrm{N}_{2}\right]^{+}, 24\right), 191\left([\mathrm{M}-\mathrm{PhCO}]^{+}, 56\right), 175(12), 149$ (29), 105 (76), 77 (100). Anal. Calcd. for $\mathrm{C}_{13} \mathrm{H}_{8} \mathrm{~N}_{6} \mathrm{OS}$ (296.31): C, 52.70; H, 2.72; N, 28.36; S, 10.82. Found: C, 52.56; H, 2.83; N, 28.41; S, 10.63.
N^{\prime}-(4-Amino-5,6-dicyano-2H-1,3-thiazine-2-ylidene)-4hydroxybenzohydrazide (10c). This compound had mp 310$312^{\circ}$, reddish brown crystals from methanol, yield 162 mg (52 \%); ir: 3400-3190 (OH, NH ${ }_{2}$ and NH$), 2225(\mathrm{CN}), 1685(\mathrm{CO})$, $1635(\mathrm{C}=\mathrm{N})$ and 1610 (aryl) cm^{-1}; ${ }^{1} \mathrm{H} \mathrm{nmr}\left(\right.$ DMSO-d $\left.{ }_{6}\right): \delta 6.90-$ 7.10 (dd, 2H, phenyl-H), 7.28 (br, 2H, NH2), 7.88-7.92 (m, 2H, phenyl-H), 9.12 (br, $1 \mathrm{H}, \mathrm{OH}$), 10.84 (br, $1 \mathrm{H}, \mathrm{NH}$); ${ }^{13} \mathrm{C} \mathrm{nmr}$ (DMSO-d ${ }_{6}$): $\delta 118.41,118.76(\mathrm{CN}), 121.42,121.63(\mathrm{C}-5$ and C6), 126.24, 128.93 (phenyl-CH), 136.82 (phenyl-C-1), 151.81 (phenyl-C-4), 164.12 (C-4), 172.88 (CO); EI-MS m/z: \% 312 $\left.\left(\mathrm{M}^{+}, 22\right), 284\left(\mathrm{M}-\mathrm{N}_{2}\right]^{+}, 26\right), 191\left(\left[\mathrm{M}-4-\mathrm{HO}-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CO}\right]^{+}, 56\right), 121$ (74), 93 (100), 77 (46), 77 (100). Anal. Calcd. for $\mathrm{C}_{13} \mathrm{H}_{8} \mathrm{~N}_{6} \mathrm{O}_{2} \mathrm{~S}$ (312.31): C, 50.00 ; H, 2.58; N, 26.91; S, 10.27. Found: C, 49.84; H, 2.42; N, 27.11; S, 10.09.
N^{\prime}-(4-Amino-5,6-dicyano-2H-1,3-thiazine-2-ylidene)-2-(4bromophenyl)acetohydrazide (10d). This compound had mp 285-287 , deep red crystals from acetonitrile, yield 187 mg (48 \%); ir: 3410-3215 (NH_{2} and NH), $2220(\mathrm{CN}), 1690(\mathrm{CO}), 1635$ ($\mathrm{C}=\mathrm{N}$) and 1610 (aryl) $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{nmr}\left(D M S O-\mathrm{d}_{6}\right): \delta 4.26$ (s, 2H, CH_{2}), 6.95-7.12 (m, 2H, phenyl-H), 7.26 (br, $2 \mathrm{H}, \mathrm{NH}_{2}$), $7.68-$ 7.73 (m, 2H, phenyl-H), 10.82 (br, 1H, NH); ${ }^{13} \mathrm{C} \mathrm{nmr}$ (DMSO$\left.\mathrm{d}_{6}\right): \delta 52.88\left(\mathrm{CH}_{2}\right), 118.36,118.62(\mathrm{CN}), 121.32,121.61(\mathrm{C}-5$ and C-6), 131.94, 131.96, 132.12 (phenyl-CH), 134.76 (phenyl-C-1), 135.12 (phenyl-C-4), 155.18 (C-2), 164.36 (C-4), 173.12 (CO); EI-MS m/z: \% 391 (15), 389 (M ${ }^{+}, 13$), 360 ($\left.\mathrm{M}_{-} \mathrm{N}_{2}\right]^{+}, 18$), 191 ([M-(4-Br-C $\left.\left.\left.6_{6} \mathrm{H}_{4} \mathrm{CH}_{2} \mathrm{CO}\right)\right]^{+}, 61\right), 137$ (12), 91 (100), 77 (56). Anal. Calcd. For $\mathrm{C}_{14} \mathrm{H}_{9} \mathrm{BrN}_{6} \mathrm{OS}$ (389.23): C, 43.20; H, 2.33; Br, 20.53; N, 21.59; S, 8.24. Found: C, 43.36; H, 2.19; Br, 20.68; N, 21.41; S, 8.39.
N^{\prime}-(5-Amino-3,4-dicyano-2H-pyrrol-2-ylidene)acetohydrazide (11a). This compound had $\mathrm{mp} 158-160^{\circ}$, orange crystals from ethanol, yield $51 \mathrm{mg}(25 \%)$; ir: $3360,3210\left(\mathrm{NH}_{2}, \mathrm{NH}\right)$, $2210(\mathrm{CN}), 1685(\mathrm{CO})$ and $1625(\mathrm{C}=\mathrm{N}) \mathrm{cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{nmr}$ (DMSOd_{6} : $\delta 2.34\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 7.41$ (br, 2H, NH 2), 10.76 (br, $1 \mathrm{H}, \mathrm{NH}$); ${ }^{13} \mathrm{C}$ nmr (DMSO-d ${ }_{6}$): $\delta 26.35\left(\mathrm{CH}_{3}\right), 118.82,119.31(\mathrm{CN})$, 127.12 (C-4), 128.26 (C-3), 155.64 (C-2), 164.31 (C-5) and 173.44 (CO); EI-MS m/z: \% 202 (M+, 11), 174 (24), 131 (19), 66 (28), 43 (100). Anal. Calcd. for $\mathrm{C}_{8} \mathrm{H}_{6} \mathrm{~N}_{6} \mathrm{O}$ (202.17): C, 47.53; H, 2.99; N, 41.57. Found: C, 47.68; H, 3.12; N, 41.41.
N^{\prime}-(5-Amino-3,4-dicyano-2H-pyrrol-2-ylidene)benzohydrazide (11b). This compound had $\mathrm{mp} 212-214^{\circ}$, yellowish brown crystals from acetonitrile, yield 69 mg (26%); ir: 3370,3225 $\left(\mathrm{NH}_{2}, \mathrm{NH}\right), 2215(\mathrm{CN}), 1690(\mathrm{CO})$ and $1630(\mathrm{C}=\mathrm{N}), 1600$ (aryl) $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{nmr}$ (DMSO-d ${ }_{6}$): $\delta 7.38$ (br, $2 \mathrm{H}, \mathrm{NH}_{2}$), 7.44-7.95 (m, 5 H , phenyl-H), 10.89 (br, 1H, NH); ${ }^{13} \mathrm{C}$ nmr (DMSO-d d_{6}): δ 118.42, 118.86 (CN), 127.16 (C-4), 128.52 (C-3), 128.93 129.26, 131.21 (phenyl-CH), 136.28 (phenyl C-1), 155.69 (C-2), 164.29 (C-5) and 173.56 (CO); EI-MS m/z: \% 264 (M ${ }^{+}$, 32), 236 $\left.\left(\mathrm{M}-\mathrm{N}_{2}\right]^{+}, 13\right), 159$ ([M-PHCO] $\left.{ }^{+}, 18\right), 105$ (100), 66 (22), 42 (52). Anal. Calcd. for $\mathrm{C}_{13} \mathrm{H}_{8} \mathrm{~N}_{6} \mathrm{O}$ (264.24): C, 59.09 ; H, 3.05; N, 31.80. Found: C, 58.94; H, 3.21; N, 31.61.
N^{\prime}-(5-Amino-3,4-dicyano-2 \mathbf{H}-pyrrol-2-ylidene)-4-hydroxybenzohydrazide (11c). This compound had $\mathrm{mp} 190-192^{\circ}$, yellowish brown crystals from acetonitrile, yield 67 mg (24 \%); ir: 3395-3230 (OH, NH_{2} and NH), 2220 (CN), 1685 (CO), 1630 (C=N), 1610 (aryl) $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{nmr}\left(D M S O-d_{6}\right): \delta$
6.93 (dd, 2 H , aryl-H), 7.41 (br, $2 \mathrm{H}, \mathrm{NH}_{2}$), 7.78-7.84 (m, 2 H , aryl-H), 9.19 (br, $1 \mathrm{H}, \mathrm{OH}$), 10.84 (br, $1 \mathrm{H}, \mathrm{NH}$); ${ }^{13} \mathrm{C} \mathrm{nmr}$ (DMSO- d_{6}): $\delta 118.62,118.93(\mathrm{CN}), 127.56$ (C-4), 128.72 (C-3), 128.92, 130.12 (phenyl-CH), 136.84 (phenyl C-1), 152.34 (phenyl-C-4), 156.12 (C-2), 164.62 (C-5) and 173.67 (CO); EI-MS m/z \%: 280 ($\mathrm{M}^{+}, 17$), 252 (11), 159 (36), 121 (33), 93 (100), 77 (76), 66 (23). Anal. Calcd. for $\mathrm{C}_{13} \mathrm{H}_{8} \mathrm{~N}_{6} \mathrm{O}_{2}$ (280.24): C, 55.72; H, 2.88; N, 29.99. Found: C, 55.86; H, 2.69; N, 30.14 .
N^{\prime}-(5-Amino-3,4-dicyano-2H-pyrrol-2-ylidene)-2-(4-bromophenyl)acetohydrazide (11d). This compound had $\mathrm{mp} 133-35^{\circ}$, orange crystals from ethanol, yield $82 \mathrm{mg}(23 \%)$; ir: 3386,3260 $\left(\mathrm{NH}_{2}\right.$ and NH$), 2215(\mathrm{CN}), 1690(\mathrm{CO}), 1630,1620(\mathrm{C}=\mathrm{N}), 1600$ (aryl) $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{nmr}\left(\right.$ DMSO-d ${ }_{6}$): $\delta 4.23$ (s, 2H, CH ${ }_{2}$), 6.95-7.11 (m, 2H, phenyl-H), 7.39 (br, $2 \mathrm{H}, \mathrm{NH}_{2}$), $7.70-7.74(\mathrm{~m}, 2 \mathrm{H}$, arylH), $10.86(\mathrm{br}, 1 \mathrm{H}, \mathrm{NH}) ;{ }^{13} \mathrm{C} \mathrm{nmr}\left(\mathrm{DMSO}-\mathrm{d}_{6}\right): \delta 52.84\left(\mathrm{CH}_{2}\right)$, 118.66, 118.93 (CN), 127.77, 128.18 (C-3, C-4), 131.92, 132.22 (phenyl-CH), 135.71 (phenyl-C-1), 136.12 (phenyl-C-4), 155.88 (C-2), 164.44 (C-5) and 173.61 (CO); EI-MS m/z: \% 358 ($\mathrm{M}^{+}, 32$), 356 (29), 330 (11), 278 (26), 198 (44), 160 (27), 91 (74), 77 (100), 66 (36). Anal. Calcd. for $\mathrm{C}_{14} \mathrm{H}_{9} \mathrm{BrN}_{6} \mathrm{O}$ (357.16): C, 47.08; H, 2.54; Br, 22.37; N, 23.53. Found: C, 46.88; H, 2.37; Br, 22.53; N, 23.69.

2-Methylimidazo[2,1-b][1,3,4]oxadiazole-5,6-dicarbonitrile (12a). This compound had m.p $=225-227^{\circ}$, brown crystals from acetonitrile, yield $40 \mathrm{mg}(23 \%)$; ir: 2985 (ali, CH), $2210(\mathrm{CN})$, $1640(\mathrm{C}=\mathrm{N}), 1085(\mathrm{C}-\mathrm{O}-\mathrm{C}) \mathrm{cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{nmr}\left(\mathrm{DMSO}_{\mathrm{d}}^{6}\right): \delta 2.16$ (s, $\left.3 \mathrm{H}, \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C} \mathrm{nmr}\left(\mathrm{DMSO}-\mathrm{d}_{6}\right): \delta 24.62\left(\mathrm{CH}_{3}\right), 117.97(\mathrm{CN})$, 127.77, 123.63 (C-5 and C-6), 156.12 (C-7'), 164.12 (C-2); EIMS m/z: \% 173 (M^{+}, 22), 158 (19), 97 (100), 69 (63). Anal. Calcd. for $\mathrm{C}_{7} \mathrm{H}_{3} \mathrm{~N}_{5} \mathrm{O}$ (173.13): C, 48.56; H, 1.75; N, 40.45. Found: C, $48.71 ; \mathrm{H}, 1.90 ; \mathrm{N}, 40.26$

2-Phenylimidazo[2,1-b][1,3,4]oxadiazole-5,6-dicarbonitrile (12b). This compound had $\mathrm{mp} 241-243^{\circ}$, brown crystals from methanol, yield $54 \mathrm{mg}(23 \%)$; ir: 3090 (aryl-CH), 2215 (CN), 1635 (C=N), 1610 (aryl), 1090 (C-O-C) cm^{-1}; ${ }^{1} \mathrm{H} \mathrm{nmr}$ (DMSOd_{6}): $\delta 7.34-7.68$ (m, 5H, phenyl-CH); ${ }^{13} \mathrm{C} \mathrm{nmr}$ (DMSO-d ${ }_{6}$): δ 118.12 (CN), 123.56 (C-5 and C-6), 128.96, 129.93, 131.14 (phenyl-CH), 136.12 (phenyl-C-1), 156.26 (C-7'), 164.34 (C-2); EI-MS m/z: \% 235 ($\mathrm{M}^{+}, 32$), 159 (28), 131 (12), 77 (100). Anal. Calcd. for $\mathrm{C}_{12} \mathrm{H}_{5} \mathrm{~N}_{5} \mathrm{O}$ (235.20): C, 61.28; H, 2.14; N, 29.78. Found: C, 61.39; H, 1.93; N, 29.57.

2-(4-Hydroxyphenyl)imidazo[2,1-b][1,3,4]oxadiazole-5,6dicarbonitrile (12c). This compound had $\mathrm{mp} 222-223^{\circ}$, brown crystals from acetonitrile, yield $55 \mathrm{mg}(22 \%)$; ir: $3490(\mathrm{OH})$, 2215 (CN), 1640 (C=N), 1610 (aryl), 1085 (C-O-C) cm ${ }^{-1}$; ${ }^{1} \mathrm{H}$ nmr (DMSO-d ${ }_{6}$): $\delta 6.88-7.48(\mathrm{~m}, 4 \mathrm{H}$, phenyl-CH), 9.18 (br, 1 H , OH); ${ }^{13} \mathrm{C} \mathrm{nmr}\left(\mathrm{DMSO}-\mathrm{d}_{6}\right): \delta 118.64(\mathrm{CN}), 122.65$ (C-5 and C6), $128.65,130.64$ (phenyl-CH), 135.42 (phenyl-C-1), 151.68 (phenyl-C-4), 156.22 (C-7'), 164.36 (C-2); EI-MS m/z: \% 251 ($\mathrm{M}^{+}, 36$), 175 (18), 147 (12), 93 (100), 77 (66). Anal. Calcd. for $\mathrm{C}_{12} \mathrm{H}_{5} \mathrm{~N}_{5} \mathrm{O}_{2}$ (251.20): C, $57.38 ; \mathrm{H}, 2.01$; N, 27.88. Found: C, 57.56; H, 2.16; N, 27.67.

2-(4-Bromobenzoyl)imidazo[2,1-b][1,3,4]oxadiazole-5,6dicarbonitrile (12d). This compound had mp $266-268{ }^{\circ} \mathrm{C}$, pale brown crystals from methanol, yield 75 mg (23%); ir: 2980 (aliCH), $2210(\mathrm{CN}), 1640(\mathrm{C}=\mathrm{N}), 1600$ (aryl), $1090(\mathrm{C}-\mathrm{O}-\mathrm{C}) \mathrm{cm}^{-1}$; ${ }^{1} \mathrm{H} \mathrm{nmr}\left(\mathrm{DMSO}_{6}\right): \delta 4.28\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 6.95-7.47(\mathrm{~m}, 4 \mathrm{H}$, phenyl-H); ${ }^{13} \mathrm{C} \mathrm{nmr}\left(\mathrm{DMSO}_{\mathrm{d}}^{6}\right): ~ \delta 52.90\left(\mathrm{CH}_{2}\right), 118.66(\mathrm{CN})$, 122.78 (C-5 and C-6), 131.32, 131.67 (phenyl-CH), 136.14 (phenyl-C-4), 139.15 (phenyl-C-1), 156.12 (C-7'), 164.33 (C-2); EI-MS m/z: \% 329 ($\mathrm{M}^{+}, 28$), 327 (25), 251 (36), 175 (23), 147
(13), 91 (67), 77 (100). Anal. Calcd. for $\mathrm{C}_{13} \mathrm{H}_{6} \mathrm{BrN}_{5} \mathrm{O}$ (328.12) C, 47.59; H, 1.84; Br, 24.35; N, 21.34. Found: C, 47.73; H, 1.65; Br, 24.14; N, 21.51.

Acknowledgement. A. A. Hassan is indebted to the A. V. Humboldt-Foundation for the donation of the Shimadzu 408 IR spectrophotometer.

REFERENCES AND NOTES

[*] To whom correspondence should be addressed.
[1] Singh, S.; Yadav, L. D. S.; Singh, H. Indian J. Chem. 1981, 20B, 518 .
[2] Yadav, L. D. S.; Shukla, K. N.; Singh, H. Indian J. Chem. 1989, 28B, 78.
[3] Kress, T. J.; Costantino, S. M. J. Heterocyclic Chem. 1980, 17, 607.
[4] Khazi, I. M.; Mahajanshetti, C. S. Monatsh. Chem. 1995, 126, 759.
[5] Balse, M. N.; Mahajanshetti, C. S. Indian J. Chem. 1980, 19B, 260.
[6] Abdel-Hamid, A. G.; Abdel-Riheem, N. A.; Emam, H. A. J. Chem. Res. (S) 1999532.
[7] Abdel-Hamid, A. G.; Metwally, N. H.; Bishai, N. S. J. Chem. Res. (S) 2000462.
[8] Vardhan, V. A.; Kumar, V. R.; Rao, V. R. Indian J. Chem. 1999, 38B, 18.
[9] Moss, S. F.; Taylor, D. R. J. Chem. Soc., Perkin Trans. I 19821987.
[10] Maxwell, R. A.; White, H. L. In (Iversen, L. L.; Iversen, S. D.; Snyder, S. H. Eds.) Handbook of Psychopharmacology, Plenum Press, New York, 1978 pp 83.
[11] Mazzone, G.; Pignatello, R.; Panico, A.; Mazzone, S.; Puglisi, G.; Pennisi, G.; Raciti, G.; Mazzone, P.; Matera, M.

Pharmazie 1992, 47, 902.
[12] Pignatello, R.; Mazzone, S.; Castelli, F.; Mazzone, P.; Raciti, G.; Mazzone, G. Pharmazie 1994, 49, 272.
[13] Hassan, A. A.; Ibrahim, Y. R.; El-Tamany, E. H.; Semida, A. A.; Mourad, A. E. Phosphorus, Sulfur, Silicon 1995, 106, 167.
[14] Hassan, A. A., Mohamed, N. K.; Aly, A. A.; Mourad, A. E. Monatsh. Chem. 1997, 128, 61.
[15] Hassan, A. A.; Mohamed, N. K.; Shawky, A. M.; Döpp, D. Arkivoc. 2003, (i), 118. Availble at http:// www.arkatusa.org/akr/journal/2003/general/3708H/708H.pdf.
[16] Hassan, A. A.; Mourad, A. E.; El-Shaieb, K. M.; AbouZied, A. H. Z. Naturforsch 2004, 59b, 910.
[17] Hassan, A. A.; El-Shaieb, K. M.; Shaker, R. M.; Döpp, D. Heteroatom Chem. 2005, 16, 12.
[18] Gomaa, M. A.-M.; Hassan, A. A.; Shehatta, H. S. Heteroatom Chem. 2006, 17, 261.
[19] Fataidi, A. J. Synthesis 1986249.
[20] Fataidi, A. J. Synthesis 1987749.
[21] Charistos, D. A.; Vagenas, G. V.; Tzavellas, L. C.; Tsoleridis, C. A.; Rodios, N. A. J. Heterocyclic. Chem. 1994, 31, 1593.
[22] Beyer, H.; Hohn, H.; Lassig, W. Chem. Ber 1952, 85, 1122.
[23] Ohta, M.; Higashijima, T. Yakugaka Zasshi 1952, 72, 376; Chem. Abstr. 1953, 47, 22281e.
[24] Ohta, M. Yakugaka Zasshi 1952, 72, 1636; Chem. Abstr. 1953, 47, 54879c.
[25] Shi, H.; Wang, Z. Y.; Shi, H.; Zhang, Z. Youji Huaxue 1996, 16, 242; Chem. Abstr. 1996, 125, 142224d.
[26] Beyer, H.; Kroeger, C. F.; Busse, G. Ann. 1960, 637, 135.
[27] Takogi, S.; Suhii, A. Yakugaku Zasshi 1958, 78, 280;
Chem. Abstr. 1958, 52, 65816f.
[28] Wang, Z.; Shi, A. Synthetic Commun. 2001, 31, 2841.
[29] Hoggarth, E. J. Chem. Soc. 19491163.

